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Diagnostic Assessment of Troubleshooting Skill in an Intelligent Tutoring System

Drew H. Gitomer, Linda S. Steinberg and Robert J. Mislevy
Educational Testing Service

All intelligent tutoring systems (ITSs) are predicated on some form of student

modeling to guide t itor behavior. Decisions based on inferences about what a

student knows and does not know can affect the presentation and pacing of

problems, quality of feedback and instruction, and determination of when a student

has completed some set of tutorial objectives. In this paper, we describe a view of

student modeling that, in the r!ourse of implementing principles of cognitive

diagnosis, takes advantage of concepts and tools developed in the areas of

probability-based reasoning, educational assessment, and psychometrics in an

attempt to develop a generalizable framework for student modeling within

intelligent tutoring systems.

Student models in an ITS can fulfill at least three functions. First, given a set

of insft-uctional options, a student model provides information suggesting which of

the available choices is most appropriate for an individual (Ohlsson, 1987). ITS's,

because they explicitly represent domains of knowledge and task performance,

prescribe instruction that should be designed at a level of cognitive complexity that

will lead to successful performance and understanding. Without explicit

representation of task performance, instruction may be focused on non-essential

features of the domain being tutored (e.g., Kieras, 1988). Second, student models in

ITS's enable prediction of the actions a student will take based on an analysis of the

characteristics of a particular problem state with respect to what the system infers

about the studPnt's understanding (Ohlsson, 1987). Given some inferred

understanding of students and of problems, one ought to be able to more accurately

predict future performance than if no model has been specified. The degree to

which student actions conform to these predictions is an indication of the validity of

the inferences made by the student model. Third, the student model enables the ITS

to make claims about the competency of an individual with respect to various
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problem-solving abilities. These claims are a shorthand that help to decide about
whether a person is likely to be capable of negotiating a particular situation and can
help the tutor make decisions about problem selection and exit criteria from a
program of instruction.

In ovder to fulfill all three functions, we propose an ITS student model
architecture that attempts to satisfy a set of cognitive and psychometric criteria that
we believe to be essential to any successful student model, particularly those
embedded in an ITS. These principles ha,-2 become embodied in a system called
HYDRIVE, an intelligent video-disc based tutoring/assessment system designed to
facilitate the development of troubleshooting skills for the F-15 hydraulics systems2.
Criteria for Student Modeling

The goal of the HYDRIVE student model is to diagnose the quality of specific
troubleshooting actions and also to infer student understanding of general constucts
such as knowledge of systems, strategies, and procedures that are associated with
troubleshooting proficiency. In designing the student modeling component for
HYDRIVE, we attempted to satisfy the following five criteria of student modeling.

1. Assessment of generalized constructs. Wenger (1987) describes three
levels of information that can be addressed by an ITS. The behavioral level of

information typically has been concerned with the correctness of student behaviors
referenced against some model of expert performance. Early ITSs such as SOPHIE-I
(Brown, Burton & Bell, 1975) contrasted student behaviors with domain
performance simulations as a basis for offering corrective feedback. The epistemic

level of information is concerned with particular knowledge states of individuals.
Using techniques such as model tracing (e.g., Anderson, Corbett, Fincham, Hoffman,
& Pelletier, 1992, Johnson & Soloway, 1985), and issue tracing (e.g., Lesgold, Eggan,
Katz, & Rao, 1992), these tutors make inferences about the goals and plans students
are using to guide their actions during problem solving. Feedback is responsive to
"what the student is thinking." The individual level of information addresses
broader assertions about the individual that transcend particular problem states.
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Whereas the epistemic level of diagnosis might lead to the inference that "the

student has a faulty plan for procedure X", the individual level of information

rnicrht include the assertion that "the student is poor at planning in contexts A and

B."

It is this individual level of information that has received the least attention

in the field of intelligent tutoring assessment. Traditional psychometrics, on the

other hand, has focused almost exclusively on cla .ns about individuals while

ignoring epistemic levels of information. An assertion is made, for example, that

an individual has high ability in mathematics, yet the epistemic conditions that

characterize high ability are never explicitly recognized. By recognizing and bridging

between both individual and epistemic levels of information, an assessment model

can have both the epistemic specificity to facilitate immediate feedback in a

problem-solving situation, and also the generality of individual information to

suggest the appropriate sequencing of problems, the moderation of instruction, and

the determination of general levels of proficiency.

To meet this objective, the HYDRIVE student model is designed to make

generalized claims about aspects of student troubleshooting proficiency based on

detailed epistemic analysis of particular actions within the system. These

generalized claims describe individual understanding at a level abstracted from any

single problem solving situation. Abstractions, such as a student's strategic

understanding , become the target constructs of the troubleshooting domain that are

the focus of instruction.

2. The student model as an implicit theory of performance. ITS student

models typically have been "runnable" in that they are designed to generate student

performance and produce the same types of errors and successes that an actual

student would if given a particular problem. The HYDRIVE student model's

generalh ed abstractions are not runnable in the same sense. lt will not generate

specific actions, but it will prcdict the likelihood of occurrence for different classes

and quality of actions. The student model is however, an implicit theory of
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performance since the model-generated profile of student competencies predicts

how students will perform on different problems and in different problem

situations.

Such a theory of performance can also be viewed as a curricular goal

structure. Lesgold (1988) has argued that ITSs, though they explicitly represent

requisite knowledge to perform a task, have failed to articulate knowledge

interrelationships in anything approximating a curriculum structure. The student

model of HYDRIVE attempts to represent student understanding at the grain size of

overarching curricular goals. Expert-like actions, for example, would lead to

inferences that a student had good system understanding, an overarching auricular

goal. The student model would not represent explicitly however, which specific

system components and their features were well understood.

The HYDRIVE student model contains two levels of features. The first level

can be construed as epistemic features, direct inferences of student understanding

referenced to actions taken at a particular problem state. The second level of

features represents the generalized constructs of individual proficiency. Links

between the generalized constructs and the directly inferred features represent an

implicit theory of performance in this domain. So, for example, the student model

suggests that an individual with high strategic understanding is more likely to take

an action that results in information about multiple components, when this is

possible, than is an individual who is judged to have poor strategic understanding.

3. The student model as a predictor of actions. Typically, ITS student models

have not supported prediction of actions based on higher-level assertions about

individual competence. Prediction is more often con fined to the relatively local

level of plans, goals, and knowledge in highly specified contexts. An explicit goal of

the HYDRIVE student model is to provide a mechanism for making predictions of

student actions based on estimates of higher-order constructs. The ability to make

such predictions creates the opportunity to directly test the adequacy of the model by

evaluating how well student actions are predicted. The testability of student model
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adequacy, particularly with respect to higher-order constructs, is a feature missing

from most ITSs.

4. The student model as probabilistic. ITS modeling decisions have either

been deterministic or at most, probabilistic in a limited sense. In deterministic

models, a student is judged as having either evidenced or not evidenced some

underlying skill or understanding via examining student behavior. For example,

many of the bug-like approaches (Brown & Burton, 1978; Spohrer, Soloway & Pope,

1986), make definitive inferences that a student is operating under one conception

or another.

Obviously, such inferences of unobservable reasoning processes can never be

certain. To address uncertainty, a number of systems have adopted local

probabilistic representation schemes that assign some likelihood values to

inferences made by the student model. These systems do not use probabilistic

reasoning to update inferences except at the most local levels. Updates follow

relatively ad-hoc, albeit sensible updates of likelihood, that do not reflect the

interdependencies of probabilities that should exist within a structural network that

is governed by probability theory. Anderson's (Anderson & Reiser, 1985) LISP tutor

is one such example of this approach.

Lesgold, Eggan, Katz & Rao (1992) have modeled student performance using a

fuzzy variable methodology. Evaluated actions update unobservable variables in a

consistent, but non-probabilistic manner. Though the rules of probability theory

(e.g., ypi...pri=1) are preserved locally, probabilistic relationships between variables

are not specified. This lack of specification precludes the testability of

interdependencies among variables.

The HYDRIVE assessment scheme takes advantage of advances in

probabilistic networks to characterize and assess the quality of a student model

through the application of probability theory. Mislevy (Mislevy, 1993; Mislevy,

Yamamoto, & Anacker, 1992) has presented the logic for the application of this

methodology to issues of assessment. Essentially, it combines the statistical power of
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probability theory to networks that are structures derived through the cognitive

analysis of task domains. Probability theory provides a sound approach to evaluate,

modify, and test student models predicated on cognitive understanding of task

performance.

5. The student model as generalizable to other domains. The HYDRIVE

model is designed to be generalizable to other domains aside from technical

troubleshooting. If there exists a cognitive model of domain performance in Wrdch

the interrelationship between features can be specified probabilistically, and if

student behaviors within the tutor can be evaluated in terms of performance on

some subset of those features, than this approach should be feasIble. The power of

this approach derives from the explicit representation of relationships between

features, not from any particular qualities of the features themselves. Therefore,

Mislevy has had success in modeling such tasks as arithmetic (Mis levy, 1993) and

proportional reasoning (I3eland & Mislevy, 1992), in addition to the current effort.

HYDRIVE's Design and Rationale

In this section, we overview the HYDRIVE system in order to introduce the

context in which this student modeling approach was developed. HYDRIVE is

designed to simulate many of the important cognitive and contextual features of

troubleshooting on the flightline. Hydraulics systems are involved in the operation

of flight controls, landing gear, the canopy, the jet fuel starter, and aerial refueling.

Technicians in this career field diagnose and service F-15 problems on the flightline,

where the aircraft takeoff and land. Their mission is to keep the aircraft flying as

regularly as possible. In addressing problems, they typically isolate faulty

components and replace them. Actual repair of any faulty component is performed

by other individuals in a shop environment.

HYDRIVE presents problems as video sequences in which a pilot, who is

about to take off or has just landed, describes some aircraft malfunction to the

hydraulics technician (e.g., the rudders do not move during pre-flight checks). Once



the problem is presented, HYDRIVE's interface allows the student several options.

The student can perform troubleshooting procedures by accessing video images of

aircraft components and acting on those components. Alternatively, the student

can choose to review technical support materials, including hierarchically organized

schematic diagrams, which are available on line. Students can also make their own

instructional selections at any time during troubleshooting, in addition to or in

place of instruction that is recommended. A schematized version of the interface is

presented in Figure 1.

Insert Figure 1 about here

The general structure of HYDRIVE is presented in Figure 2, with the modules

responsible for student modeling highlighted. Students act on the aircraft through

the interface. The state of the aircraft system, including changes brought about by

user actions, is represented in the system model. The quality of student

troubleshooting is monitored by evaluating how the student uses information in

the system model to direct troubleshooting actions. As a result of decisions made by

the student model, instructional help may be suggested by the tutor. The student

model, then, is best understood in terms of its relationship to the system and

instructional models.

Insert Figure 2 about here

The goal of creating an assessment scheme that represents an implicit model

of student performance (Criterion 2) must rely on an understanding of the nature of

task performance by individuals with different levels of expertise. Further, as an

intelligent tutoring system, both the tutoring or instructional goals and the

assessment constructs ought to derive from a common understanding. Therefore,

the rationale for HYDRIVE's design was established through the application of the
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PARI cognitive task analysis methodology developed in the Basic Job Skills Program

of the Armstrong Laboratories (Means & Gott, 1988; Gitomer et al, 1992). The

purpose of this analysis was to understand the critical cognitive attributes that

differentiate proficient from less-proficient performers in the domain of

troubleshooting aircraft hydraulic systems. PARI analysis is a structured protocol

analysis scheme in which maintenance personnel are presented a problem and then

asked to solve the problem mentally, detailing the reasons for their action

(Precursor), and the Action that they would take. The technician is presented a

hypothetical Result and then asked to make an Interpretation of the result in terms

of how it modifies understanding of the problem. Technicians are also asked to

represent their understanding of the specific aircraft system they are troubleshooting

by dra wing a block diagram of the suspect system.

Proficiency differences were apparent in three fundamental and

interdependent areas: system understanding, strategic understanding, and

procedural understanding, all of which are necessary for formation of an effective

mental model of a system. These are the generalized constructs upon which the

content of HYDRIVE is based. The coherence of the assessment approach, and the

tutor itself, is due to the fact that the constructs monitored in the student model

profile and the instructional goals all derive from the same PARI cognitive task

analysis.

System understanding. System understanding consists of how-it-works

knowledge about the components of the system, knowledge of component inputs

and outputs, and understanding of system topology, all at a level of detail ne.:essary

to accomplish necessary tasks (Kieras, 1988). Novices did not evidence appropriate

mental models, as represented by the block diagrams they were asked to draw, of any

hydraulic system sufficient to direct troubleshooting behavior. In most cases,

novices were unable to generate any mental mc del at all. The "models" they did

generate generally included a small number of unconnected components that were

so vague as to be of minimal use in troubleshooting. The operation of any given
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aircraft system was essentially a black box for these technicians. Mental models for

the experts, also represented by the block diagrams they were asked to draw, tended

to be accurate representations of the specific aircraft system, including connections

between components and between power systems. Experts' mental models

generally evidenced a full understanding of how individual components operated

within any given system, even though they did not understand the internal

workings of these same components, which they had only to replace. Examples of

expert and novice representations for the same problem (rudders fail to deflect with

input) are presented in Figures 3 and 4.

Insert Figures 3 and 4 about here

Experts also demonstrated a principled sense of hydraulic system functioning

independent of the specific F-15 aircraft. They seemed to understand classes of

components beyond the specific instances found in a particular aircraft or aircraft

system. Their knowledge was hierarchically organized according to the functional

boundaries of the system. For a flight control system for example, hierarchical and

generic clusters of components would include at least a switching system (for

emergency backup), an electrically controlled input system, a hydraulic power

source, and a set of hydraulic controls (the servo-actuators and related valves). At

an even higher level, experts also understood the shared and discrete characteristics

of flight control and other hydraulic-related aircraft systems.

The most important consequence of this type of understanding is that, in the

absence of a completely pre-specified mental model of a system, experts are able to

construct a mental model using schematic diagrams. They are able to flesh out the

particulars given their basic functional understanding of how hydraulic systems

work in the context of the aircraft. Experts are also able to use their knowledge of

failure characteristics to help isolate a problem to a particular aircraft or power

system. For example, intermittent failures have a higher likelihood of being
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electrical rather than hydraulic in nature.

Strategic understanding. Novices did not employ very effective

troubleshooting strategies either. That is, they demonstrated little ability for using

system understanding to perform tasks that would allow them to draw inferences

about the problem from the behavior of the system (Kieras, 1988). In many cases,

the only strategy available to these individuals was to follow designated procedu-es

in technical materials, even when it wasn't clear that the symptom matched the

conditions described in the written manuals. While these materials, known as

Fault Isolation Guides (FIs) can be useful tools, novices frequently fail to understand

how an FI procedure serves to constrain the problem space. It is not always clear to

the novice what information about the system is addressed by a particular FI

procedure. Even in those cases where the technician evidences some system

understanding, a serial elimination strategy, where components adjacent to each

other are operated on in order, is frequently used. This strategy allows the

technician to make claims only about a single component at a time. A space

splitting strategy, conversely, dictates the use of actions that provide information

about many components at one time, making this type of strategy much less costly.

Novices do not evidence a strategic orientation that minimizes the costs of

troubleshooting procedures while problem solving.

Expert strategies are much more effective, select approaches that maximize

information gain and minimize the expense of obtaining such information. Experts

try to use effective space-splitting strategies which isolate problems to a subsystem

through the application of relatively few and inexpensive procedures that can rule

out large sections of the problem area. They almost always attempt to eliminate and

localize power system failures (eg., functional failure due to something like a blown

fuse) first; then activate different parts of the system tmtil they find the path a1.ong

which the failure manifests itsclf; and finally localize the failure to a specific

segment of this path (i.e., mechanical, electrical, hydraulic). The only exception to

this general strategic model occurs when an exceptionally cheap action is available
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that provides some information about the system. The ability to balance cost

(measured in time to complete an action) and information benefit is one of the

hallmarks of expertise in this domain. Experts are able to evaluate results in terms

of their mental models of the system and make determinations of the integrity of

different parts of the aircraft. When experts consult the Fl guide, they do so as a

reference to double check whether they may be overlooking a particular problem

source. They may execute a recommended H procedure, but never in a purely

procedural and mechanical fashion. For experts, an FI action is immediately

interpreted in terms of and integrated with their system mental model.

Those technicians with intermediate skills are quite variable in their use of

strategies. When individuals have fairly good system understanding, they

frequently evidence effective troubleshooting strategies. When system

understanding is weak though, technicians often default to FI and serial elimination

strategies. If inteimediates have a basic understanding of troubleshooting strategy

that is dependent on system understanding, then the implication for instruction for

these individuals is to focus on system understanding. For novices, the evidence

suggests that direct strategy instruction may also be necessary.

Procedural understanding. Every component can be acted upon through a

variety of procedures which provide information about some subset of the aircraft.

Information about some types of components can only be gained by removing and

replacing (R&R) them. Others can be acted upon by inspecting inputs and outputs

(electrical, mechanical, and/or hydraulic), and by changing states (e.g., switches on or

off, increasing mechanical input, charging an accumulator). Some actions

inherently provide information only about the component being acted upon, while

other actions can provide information about larger pieces of the problem area,

depending upon the current state of the system model. R&R procedures tend to

provide information only about the component being operated upon.

As individuals gain expertise, they develop a repertoire of procedures that can

be applied during troubleshooting. Novices are generally limited to R&R actions
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and the procedures specified in the FL They often fail to spontaneously use the

information that can be provided from studying gauges and indicators and

conventional test equipment procedures.

Experts are particularly adept at partially disabling aircraft systems and

isolating major portions of the problem area as functional or problematic. For

instance, rudders can be controlled through electrical and/or mechanical inputs. By

disabling the electrical system, for example, a great deal of information about both

the hydraulic and mechanical paths can be obtained.

The relationship between system, strategic, and procedural understanding. A

mental model includes information not only about the inputs and outputs of

components, but also available actions that can be performed on components. The

tendency to engage in certain procedures or strategies is often a function of the

structure and completeness of system understanding, rather than the understanding

of strategies or procedures in the abstract. Failure to engage in space splitting may be

attributable to one of several factors. First, the troubleshooter may not understand

the system sufficiently to suggest appropriate points to split the system. Second, the

individual may not have available appropriate actions (procedures) that will

effectively divide the problem space. A third possibility is that the troubleshooter is

simply unaware of how and when to use a space-splitting strategy. For those beyond

the novice levels, the greatest reason for ineffective problem solving typically is

attributable to poor system understanding. For the more novice individuals, there

may even be an absence of a general aircraft system understanding that specifies the

relationships between power systems.

Task analysis implications for assessment. This view of troubleshooting

expertise has implications for student modeling and corresponding instructim in

HYDRIVE. For assessthent, failure to execute an effective troubleshooting action

may, on the surface, appear to be a strategic failure. However, because a superficial

strategic deficit may be due, in fact to an impoverished system understanding, poor

problem solving will contribute to a lower estimate of a student's system knowledge
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as well as a lower estimate of strategic knowledge. If a student has exhibited strong

strategic understanding on other problems for which good system understanding

exists, then the likelihood is greater that the performance deficit on a new problem

is directly attributable to a poor system knowledge. The student model must

therefore represent the conceptual interdependencies that we assume to exist

between different forms of understanding.

HYDRIVE's instruction focuses on effective system understanding and

troubleshooting strategies rather than on optimizing actions to take at a given point

in a problem. Ineffective actions raise doubts about a student's system

understanding, which might suggest instruction targeted towards student

construction of appropriate and useful system models. A key instructional strategy

is to help students develop a hierarchical model of system understanding that is the

critical feature of expert knowledge. HYDRIVE attempts to make this structure

explicit through the use of hierarchical diagrams and organized verbal information.

The claim is that effective troubleshooting strategies are more likely to be utilized in

the presence of such a hierarchical structure.

Implementation of HYDRIVE's Student Model

There are three primary components to the HYDRIVE student model; the

action evaluator, the strategy interpreter and the student profile. These three

components depend on information from the system model to produce their

results. The strategic goal of troubleshooting is to effectively reduce the problem

area: to get as much information about components in the system model, so as

either to eliminate them as sources of the failure or pinpoint the failure, in as

efficient and cost-effective manner as possible. In HYDRIVE, students' actions are

evaluated in terms of the potential information they yield given the current state of

the system model. The action evaluator consults the current state of the system

model and calculates the effects on the problem area of an action sequence

performed by the student on the system model. The strategy interpreter makes rule-
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based inferences about the student's apparent strategy usage based on the quality of

information (i.e., quantity and type of problem area reduction) obtained from the

action evaluator. Although obtained in a wide variety of situations that students

arrive in as they work through a problem, these results are expressed in terms of a

more abstract set of variables that are meaningful across situations. In the

terminology of Mislevy (1993), these are the "observable variables" x. Not all

elements of this vector need apply to all situations, but all updating of the student

model variables will be mediated in their terms. The results of the strategy

interpreter are then used to update the student profile, a network representation of

student competence. The network element nodes and relationships are derived

from the PARI analysis and are updated across actions and problems. In Mislevy's

terms, these more abstractly-defined aspects of competence comprise the student

model variables, 13. As described below, a critical aclivity is specifying the

probabilities that students having a given configuration of student-model values

would take actions described as various possible values of relevant observable

variables; that is, p(x I 13). Each of the student components is described below, but

because action evaluation is based on information obtained from states and changes

in the system model, we begin with a brief discussion of system modeling in

HYDRIVE.

The system model. In HYDRIVE, the student uses the system model to

simulate various aircraft states and explore the results of these simulations as a

means of finding where in the system the problem resides. A system model is

defined as a set of components that are connected by means of inputs and outputs. A

component can have any number of inputs and outputs. Connections between

components are expressed as pairs of components, the first being the component

produdng an output to the second in the pair which receives it as an input. These

pairings are called edges and are also qualified by the type of power (electrical,

hydraulic or mechanical) characterizing the connection. For example, the

connection between a rudder and its actuator (the servomechanism which causes it
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to move) would be left rudder servocylinder_left rudder (mechanical) because the

actuator produces a mechanical output which the rudder processes as input. Every

component has a small set of possible inputs. For example, the landing gear control

handle can be in the up or down position. The output of a component is

controlled by its input(s) and the internal state of the component. Given a set of

inputs, the component will produce one or more outputs, the value of which

depends on whether or not the component is working. For example, moving the

landing gear handle to the down position will mechanically activate a relay which

results in the creation of an electrical path that energizes the mechanisms associated

with landing gear operation, assuming none of these components is failed. A failure

may cause no output or an incorrect output to be produced.

Every component also has a set of actions (procedures) that can be periormed

on it. Some components can be set or manipulated (e.g., switches or control

handles), others can be checked for electrical function (e.g., relays), and others can be

inspected visually (e.g., mechanical linkages).

The system model processes the actions of the student and propagates sets of

inputs and outputs throughout the system. A student activates the system model by

providing input to the appropriate components and then has the option of

examining the results of such actions by observing any other component of the

system. Thus, a student can move the landing gear handle down and then go and

observe the operation of the landing gear. If the landing gear does not move down,

the student may decide to observe the operation of other components in order to

begin to isolate the failure.

When a student uses the system model to simulate certain aircraft conditions

and then observes the results of that simulation, informa don about the problem

area (i.e., which components are still candida tes as the source of the failure and

which components have been eliminated as 'possibilities) is presumed available. If

the pilot moves the control stick and the rudders move as the student might expect,

then an inference can be drawn that all components involved in rudder operation
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when controlled by the stick are functioning correctly and should be eliminated as

sources of the problem. If, however, the rudders do not move as expected, then the

shiaent should be able to make the inference that some component is not working

correctly along the path activated by the simulation between the control stick and

the rudders. Observation jf components a. intermediate points along this active

path can provide information about subsets of components involved in this

particular way of operating the rudders. If an expected output is not produced at

point x, then an inference can be made that the faulty component is somewhere

between the point of control (e.g., the control stick), and the point of observation.

The action evaluator. For the hydrauli:s technician, the system model

appears as an explorable, testable aircraft system in which a failure has occurred. All

components belonging to this system are part of the initial problem area,

represented as sets of input/output edges. When a student acts to supply power and

input to the aircraft system, the effects of this input spread throughout the system

model (as values propagated along a continuum of component edges), creating

explicit states in a subset of components. This subset is called the active path. If one

thinks of the system model as bounded on the one hand by the point(s) at which

input is required to initiate system function (point of control), and on the other by

its functionally terminal outputs, then an active path typically begins with the one

and ends with the other, including all the connections in between. So, for example,

an active path can be created for the steering system of an automobile by turning the

steering wheel. This action creates an active path extending from the steering wheel

(the input boundary, or a point of control of the system) to the tires (the output

boundary of the system). For a power steering system the ignition switch is another

point of control, since whether or not input is also supplied to turn the engine on

affects the contents of the active path (one would be primarily hydromechanical, the

other strictly mechanical).

The action evaluator considers every troubleshooting action from the

student's point of view in terms of the information that can be inferred with respect
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to effects on the problem area. The action evaluator, in updating its problem area,

assumes that the student always makes the correct judgment about whether

observations reveal normal or abnormal component states. If, for example, having

supplied a set of inputs, a student observes the output of a certain component,

which the system model 'knows' is normal, then the student is presumed to infer

that all edges on the active path, up to and including the output edge, are

functioning correctly and, therefore, remove them from the problem area. If the

student, in fact, makes the correct judgment about the observation and the

appropriate inferences from it concerning the problem area, then the dynamic

problem area that the student model and the student hold correspond and

troubleshooting continues smoothly. If, however, the student decides that the

observed component output was unexpected, or abnormal, then, at least in the

student's mind, all the edges in the active path remain in the problem area, any

others would be ..iininated, and the problem area maintained by the student

model begins to diverge significantly from the one present in the student's mind. In

this case, subsequent student actions and corresponding evaluations are likely to

signal the need for instruction.

Figure 5 presents a grossly simplified hypothetical problem space for a

hydraulics-like system. This system has two points of control which both send

electrical signals to electrical components A and B respectively. Both of these signals

are sent to an electromechanical component which outputs a mechanical signal to

the mechanical component. Hydromechanical components A and B operate by

receiving the mechanical signal as well as hydraulic power from hydraulic circuits A

and B respectively.

Insert Figure 5 about here

In this hypothetical model, a number of active paths can be set up to isolate a

fault. By activating point of control A, the entire system other than the path that
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includes point of control B and electrical B are being tested. If the output from the

hydromechanical components is unexpected, then the problem is clearly not

associated with point of control B or electrical B edges. If expected output were to be

obtained when point of control B is activated, then it is possible to infer that the

locus of the fault is point of control A or electrical A, for other than these two

component edges, the active paths overlap. Other discriminations can be made by

selectively disabling hydraulics A and B and observing changes in the output of the

hydromechanical devices. In HYDRIVE, the student can use a review function to

help compare his or her dynamic idea of the problem area with that maintained by

the student model.

The strategy interpreter. Actual strategy evaluation occurs by evaluating

changes to the problem area, formally represented as k, the entire series of edges

belonging to the system/subsystem where the problem occurs. As a student acts on

the system model, k is reduced, with elements from k being removed as a result of

an action sequence. If a failed component is on the active path, under the

assumption that only one component fails at a time (a reasonable assumption in

this domain), all edges other then those on the active path are eliminated from k.

Upon inspection of any particular component on this path, the system model will

also reveal a state which may or may not be expected from the student's perspective.

The update of k stems from an inference that the fault has to be located within the

active path and so all other components are removed from consideration. If,

however, there is no failed component in the active path, then all edges in the

active path are eliminated from k, while all other component edges remain in the

problem area as candidate failure sources. The system model will return states that

should be judged normal by the student for component edges along this active path.

Also, an individual component is removed from k whenever the student selects a

remove and replace action. Here, the assumption is that the replacement

component is operational. However, with remove and replace, an inference can be

made only about the output edges of the replaced component. No inferences are
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possible for other components. The student's task is to reduce k until the problem

is solved.

The method for reducing k is generalizable to any system that is comprised of

components in which sequential flow of control can be defined. As long as one can

make a judgment about the output state of a component, then inferences can be

made about the state of components comprising a subset of the active path, from the

point of control to the point of inspection.

When a sequence of actions results in new status information about more

than one edge in the problem space, HYDRIVE designates the strategy as a type of

space-splitting. HYDRIVE also differentiates between several forms of space

splitting. There is power system elimination, which removes power system sources

from the problem area (as in checking hydraulic pressure gauges or circuitbreakers);

there is active path splitting, which activates different combinations of components

to achieve a particular system function (as in operating the rudders through the

control stick and through the rudder pedals); and there is power path splitting,

which either eliminates series of edges having the same power type or locates the

failure to a particular power type (as in using electrical backup to replace mechanical

function).
Other troubleshooting actions do not set up active paths and do not result in

space splitting, but are discrete tests of single components. The most obvious is

simply removing and replacing a component and observing whether the change

results in a fix to the system. A remove and replace strategy is expensive both in

terms of time and equipment, and is recommended only when there is a high

degree of certainty that the replaced component is faulty. In the Figure 5 example,

the electro-mechanical component could be replaced to test its functionality.

A serial elimination strategy refers to actions that only provide information

about one edge at a time. A serial elimination strategy is inferred when one action

provides information about one edge and the ensuing action provides information

about an adjacent edge. Though the remove and replace strategy is a form of serial
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elimination, HYDRIVE's designation is limited to actions that are not remove and

replace actions (such as visual or electrical inspections).

An FI strategy is one in which the student follows procedures designated in

an accessed Fl guide for three consecutive actions. While such a strategy is not

inherently problematic, it is clear that experts and novices use the FI in different

ways. Therefore, the evaluation of a set of actions as an FI strategy will result in

probes from the instructional model to ensure that the student understands the

effects of actions taken.

Other evaluations do not actually infer strategies, but do make claims about

the effectiveness of actions taken. Redundant actions are those that do not provide

any new information about the problem. It should be noted that some actions are

not costly to execute in terms of time or parts. In fact, experts often times will rerun

a procedure to replicate and validate a finding. It is only when actions are costly and

do not provide any new information that they are considered redundant. Irrelevant

actions are those in which a student performs actions on components which are not

at all part of any active path in the system of interest in the problem. Replacing the

tires when an automobile won't start is an example of an irrelevant action.

The evaluation of the quality of a strategy is conditional upon the problem

state at a particular point. While a remove and replace strategy is evaluated as poor

when the problem state allows for space splitting, the same strategy is considered to

be of better quality when the potential problem causes have been narrowed to one or

two candidates. Therefore, within the strategy evaluator there exists a set of rules

that characterize k in terms of the "besr strategy options that are available. Best

strategies are strictly a function of the attributes of components in k, and are easily

described. As an example, if components in k represent different power systems,

then a potential strategy is to execute an action that will differentiate those

components (a power space split). If all component edges in k represent one power

system, such a strategy is not feasible.

HYDRIVE makes use of a strategic goal hierarchy to identify the optimal



21

strategy, given the current state of the problem area. Figure 6 contains HYDRIVE's

strategic goal structure. The comparison of the student's strategy and the best

strategy available, as calculated by the strategy interpreter, drives the instructional

model which makes the strategic goal hierarchy embedded in the student model

explicit to the student in the form of prompts, reminders and instructional exercises.

Insert Figure 6 about here

HYDRIVE employs a relatively small number of strategy interpretation rules

(-25) to characterize each troubleshooting action in terms of both the student and

the best strategy. An example of a student strategy rule is:

IF active path which includes failure has not been

created and the student creates an active path which does

not include failure and edges removed from k are of one

power class, THEN the student strategy is power path

splitting.

An example of a best strategy rule is:

If k contains one or more hydraulic power systems. THEN the

best strategy is power system elimination.

The student profile. HYDRIVE uses the results of the strategy and action

evaluator to update the student profile, represented as a network, using the ERGO

(Noetic Systems, 1993) system. The student profile network that includes only a

significant portion of the flight control system is presented in Figure 7. The nodes at

the right are those that are directly updated through the strategy evaluation. These

are thought of as observables. All other nodes can be thought of as constructs which

have values determined, in terms of probability distributions for their possible

values, by evidence captured by the observables. Once the observables are set by the

strategy evaluation process, the remainder of the network is updated based on
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probabilistic relations among nodes. There is an increasing level of abstraction and

generality of inferences about students as one moves to the left of the figure.

The nodes and relationships in the network are derived from the PAM

analysis. The PARI analysis supported the idea that proficiency could be

characterized by knowledge of systems, strategies, and procedures, and that each of

these broad areas could be characterized in terms of constituent parts. Analysis of

individual differences in actions le-1. to the association of cort tructs with particular

observables. So, for example, the PAM data made it clear that an effective space-

splitting action required knowledge of strategies, procedures, and the particular

system being explored. The interdependencies evident in the PAM data are

represented in the student profile network.

Insert Figure 7 about here

All of the nodes in the system, except tor the direct strategy node (StratObs)

are represented as having two states, each state having a probability associated with

it. We are in the process of exploring more fine-grained distinctions among states.

For example, Hawkes, Derry and Rundensteiner (1990), employing a fuzzy reasoning

approach, have developed an ITS student model that makes use of seven levels of

classification. For the observables, the states are Positive and Negative, for any

strategy interpretation provides positive or negative evidence that some knowledge

or skill is evident. When updated, they are assigned one of these two discrete states.

The other nodes, those that are indirectly updated via the observables, are

characterized by the states Strong and Weak, with a probability associated for each

state.

The (splitable) node functions as a description of the current state of k,

whether the remaining edges in k can be reduced by sp&ce splitting techniques or

not. This is an important function, because the quality of an action can only be

considered in the context of what is possible. Removing and replacing a
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component, as already noted, is a costly procedure that provides limited

information. Therefore, when space splitting is available, this type of action would

be associated with less than expert troubleshooting. However, towards the end of a

problem solution, when space splitting is no longer possible, remove and replace

actions would be considered more positively.

The (StratObs) node takes on one of five values. Space split, Serial

elimination, Remove and Replace, Redundant and Irrelevant. When the strategy

evaluator makes an inference about the most recent sequence of troubleshooting

actions, that inference is used to update each of the observables in a manner

consistent with a conception of the interdependent nature of troubleshooting

performance. As noted, a space splitting strategy not only indicates strategic

understanding, but also indicates understanding of the system being troubleshot and

the procedures used to effect the troubleshooting. Therefore, a number of

observables will be updated positively when a space splitting strategy is inferred. On

the other hand, a redundant action is negatively related with strategic

understanding, system understanding and procedural skill. Corresponding

observables would be assigned negative evidence in the case of a redundant

evalua tion.

The exact nature of the updating in any case is determined through

probabilitv-based inference; having specified the probabilities that a student with

known competency values would take each of the potential actions in a given

situation, then likeloods induced by the observation of a particular action are

combined via Bayes Theorem with previous knowledge about the student to yield

updated beliefs about the student-model variables. Thus, the same action can lead

to qualitatively different updating when previous states of knowledge differ. For

example, a redundant action taken when little is known about a student might lead

to downgrading strategic understanding, system understanding, and procedural skill

across the board. However, if we previously had evidence for good system

understanding and procedural skill, but little evidence for strategic understanding,
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the downgrading would appear mainly for the latter variable.

Once the observables are set, updating occurs as a function of the probabilistic

relations specified in the network. Looking at the left side of Figure 7, Proficiency is

a parent of System Knowledge, Procedural Knowledge, and Strategic Knowledge.

The probability specification when the network is initially constructed is a response

to the question "given that the student is proficient (strong), what is the probability

that the student is strong in each of the respective knowledge areas" and also "given

that the student is not proficient (weak), what is the likelihood that the student is

strong in each of the respective knowledge areas?" If proficient people were always

strong in system knowledge and non-proficient individuals were always weak in

system knowledge, then the respective probabilities would be close to 0 and 1.

Such extreme values are seldom helpful in a network. First, it is rare that one

can make such certain claims about anything based on someone's performance in an

ITS. Second, the specification of such extremes in a network means that a single

piece of evidence will have undue influence on the network. Any information that

suggests someone has strong strategic knowledge would imply that the person is

automatically proficient. By moderating the probabilities, one can temper the

updating in the system so that multiple pieces of evidence influence any judgments.

The relative influence of a parent-child relationship is determined by the

relative probabilities. Relationships having strong influence are characterized by

child probabilities values that differ quitc2 a bit for different parent conditions. Less

influential relationships are characterized by child probability values that are more

similar across different parent conditions. So, for example, because the PARI

analysis showed that expert-novice differences were better described by strategic

differences than by procedural differences (even novices have some expertise for

different procedures), given a strong overall proficiency, the difference in probability

values associated with strong and weak understanding , respectively is greater for

strategic understanding than it is for procedural understanding. Those probability

values are presented in Table 1. Increasing estimates of strategic understanding will

el
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have a stronger impact on estimates of proficiency than will increased 'estimates of

procedural understanding. Similarly, conditional probabilities of observable actions,

given values of the student-model variables, were initially specified based on results

from PARI traces. Having observed several acknowledged experts' and novices'

solutions, we could begin to learn about the relative likelihoods that, say, an expert

in a situation in which space-splitting was possible would in fact t-ke a space-

splitting action, compared to taking a redundant action, consulting the fault

isolutation guide, and so on.

Insert Table 1 about here

Updating from instruction. While HYDRIVE's system model functions as a

discovery world for system and procedural understanding, and its student model

makes its evaluations based on an implicit strategic goal structure observed in expert

troubleshooting, it is only in the instructional model that all of HYDRIVE's goals

are made explicit. HYDRIVE's instructional model is driven by the comparison of

the student strategy and what HYDRIVE 'thinks' is the best strategy under the

prevailing conditions. The student is given great latitude in pursuing the problem

solution; the instructional model intervenes with prompts or reminders (i.e.,

diagnostics) only when a student action constitutes an important violation of the

rules associated with the strategic goal structure. As mentioned before, this is most

likely to occur when the student's idea of the problem area and the student model's

representation of same diverge in some dramatic way. Although HYDRIVE will

diagnose and recommend some form of instruction, the actual presentation of any

instruction is under direct control of the student who is free to take the instructional

model's recommendation, choose other instruction, or continue troubleshooting

without any instruction.

HYDRIVE's curriculum is directly informed by the cognitive attributes

described in the student profile. The flow of control within the instructional model
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is dictated by the assumpOon that the student must have adequate system

knowledge (a 'runnable' model of the aircraft system) before selecting a

troubleshooting strategy. Therefore, a student action which fails to reduce the

problem area is first examined in the context of the student profile elements

pertaining to system understanding. If these indicate a deficit, instruction is

recommended to improve the student's mental model of the physical system. The

results of many of these exercises (for example, the 'building' of an aircraft

system/subsystem) provide direct evidence of the student's system understanding

and cause the related profile elements to be updated. After the point that a student's

profile elements indicate proficiency in system inderstanding, ineffective actions

are considered in the context of strategic deficit and instruction shifts to emphasize

and encourage HYDRIVE's strategic goal structure. Success or failure in certain of

these exercises continues to update relevant profile elements.

Setting the probability values. In some situations where there is a large

historical database, it is possible to determine empirically the conditional

probabilities of observable variables given causal variables ("construct variables" in

the present terms). In HYDRIVE, however, we do not have the luxury of analyzing

large numbers of solutions from acknowledged experts and novices of various types.

Initial values must be set subjectively, and revised as seen appropriate through

model-checking activities. In essence, the objective is to encode a network structure

and conditional probabilities specifications which correspond with experience to

date not only locally (i.e., for a single given action-situation) but globabally (i.e., after

accumulating evidence over a series of actions within a problem, then over a series

of problems.) The HYDRIVE probabilities were set through an iterative process of

making initial estimates, applying data obtained from the PARI analysis as proxies

for what the student would do within the HYDRIVE tutor, and then evaluating the

behavior of the network to determine whether all nodes were behaving sensibly in

terms of the cognitive model. Initial probabilities were problematic in a number of

ways. At times, student estimates would be updated too rapidly. At other times,

3
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they wouldn't be updated despite actions that should have affected estimates of

student competence. Other problems included updates moving in unexpected

directions. Because all the probabilities are set at the individual node level, the

behavior of the entire network is difficult to anticipate. However, by repeatedly

applying data, and evaluating the network's behavior, probabilities can be tuned so

that the system behaves in a manner consistent with human judgments of

performance. These cycles of model building and model criticism are analogous to

those required in the construction of, for example, medical expert systems

(Andreassen, Woldbye, Falck, & Andersen, 1987)

Ultimately, as on-line data is obtained, the probabilities can be fine-tuned to

an even greater degree. One of the values of this approach is that updates are

propagated throughout the system, so that explicit predictions are made about the

likelihoL d of a type of action occurring given a student profile. For example, a

highly proficient student would be more likely to engage in space-splitting behavior

given that space-splitting is possible than would a less proficient student. These

likelihoods should be evident in the student profile and are able to be tested by

evaluating student actions under these conditions. Discrepancies between predicted

and observed actions will force refinement of the system.

Example student profiles. The updated profiles resulting from an ineffective

and effective solution on a problem in the directional flight control system are

presented in Figures 8 and 9, respectively. The ineffective solver first executed a

number of actions that followed the Fl guide. Following the Fl does not result in

any updating of the network, for following the H is not inherently bad or good.

Sometimes it makes sense and sometimes it doesn't. Simply using the Fl to direct

actions is insufficient to make a claim about the student. However, once the Fl

procedures failed to result in a solution, this solver immediately executed a number

of remove and replace actions, a poor strategy at the outset of a problem. Following

the remove and replace actions a number of serial eliminations were made. The

solution was finally arrived at by removing and replacing the suspect component.
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Insert Figures 8 and 9 about here

The expert solution began with a series of space splitting actions, followed by a

number of serial elimination actions, some of which were taken when space

splitting was no longer available. This person arrived at the solution in fewer steps

than the less effective problem solver, concluding the problem by also removing

and replacing the suspect component.

Differences in strategy usage and effectiveness of problem-solving are

reflected in the networks in Figures 8 and 9. In reading the network, note that for all

nodes except (StratObs), the upper bar is the probability of being strong on this node,

and the bottom bar is the likelihood of being weak on the node. At the beginning of

the problem, all likelihoods were at chance (.5).

As evidence accrues during problem solving some things to note in the

network are:

1. The overall difference in likelihoods for the primary constructs of

proficiency, strategic knowledge and system knowledge.

2. Differences in likelihoods for intermediate variables. For example, the

effective solver is much higher on all of the strategic variables.

3. Relatively minor differences in the procedural likelihoods, an outcome of

the probability structure that reflected the findings from the cognitive task analysis

that experts and novices differed least in procedural skill.

4. Largest effects on variables in which the information is most direct, though

likelihoods of related variables does change. For example, this problem was from

the directional flight control system. Changes in estimates of strength were greatest

for the directional system. Nevertheless, likelihoods for the lateral and iungitudinal

systems changed to a lesser extent, strengthening for the effective problem solver

and weakening for the ineffective problem solver.

5. Changes in the expectations for the observables. Though it is difficult to see
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in the figures, the StratObs distribution makes clear that there is a much greater

expectation that the ineffective problem solver will take an action that is irrelevant

or redundant than will the effective problem solver.

Controlling the model across problems. The preceding discussion has focused

on updating a student model within a given problem, under the implicit

assumption that a fixed state of competence is appropriate throughout the course of

observation. All information about the student contributes equally f 2stimates of

competence, regardless of when in the course of troubleshooting such information

is obtained. The whole point of HYDRIVE, however, is to help students increase

their competence! A mechanism to allow for change in the true status of student

model variables is therefore necessary. To this end, we are adapting a recency

strategy; that is, changes to the student-model variables effected by past problems

will be fractionally reduced at the beginning of each problem, so that information

from the current problem has more relative impact on our current beliefs than

otherwise equally-informative information from past problems. Fractional

reduction at the beginning of each problem implies a geometric rate of decay of

information from past problems. To the extent that changes do occur over time, our

current beliefs about student-model variables always lags their true status

somewhat. This approach is more conservative and less risky than attempting to

model learning explicitly, as in, for example, Anderson's LISP tutor (Anderson &

Reiser, 1985).

Implica tions

We believe we have the beginnings of an assessment model that meets the

five criteria set forth earlier in this paper. We are able to move from detailed

analysis of discrete actions to make inferences about more general characteristics of

an individual. This can be done because of an articulated cognitive framework of

performance in this domain. The probabilistic features of this approach prevent ad

hoc updating of variables and. forces a clear specification of the relationship among
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variables. The probabilistic network also allows for updating to work in two

directions, parent-to-child and child-to-parent. The updating scheme allows for

testing and evaluation of the student model, due to the explicit predictions that can

be made. Most ITS student models are not capable of generating such predictions

and are, therefore, incapable of being evaluated in the same way.

This type of student modeling appears to be generalizable to many other

tutoring contexts. The most obvious transfer would be to other ITSs in

troubleshooting domains. The rules of strategy evaluation are likely to be

generalizable since their generalizability resides in the ability to explicitly define

strategies in terms of an action's effect on k. While other domains may require the

definition of strategies different from the one used by HYDRIVE, as long as these

strategies can be referenced to changes in the state uf k, or some similar

representation, such generalization is quite straightforward.

ITSs more broadly, regardless of domain, typically have some form of

strategy/action evaluator. What many are lacking is the bridge between an action

evaluator and claims about the individual. However, it seems that links to the

individual are nr:essary if we want to make generalizations from specific problem

solving contexts to broader claims about competence and also if we want to direct

instruction to issues that transcend particular problem states. Since assessment is

fundamentally a process of making generalized inferences based on specific

information, this type of approach may contribute to the development of

assessment in the ITS world.

More generally though, this approach to assessment has implications for

assessment in traditional pedagogical contexts. Features that support student

modeling in HYDRIVE are critically important to, though too often absent from,

successful classroom instruction. The first requirement is a clear and explicit

representation of the domain, or structure of knowledge, to be learned. More than

just isolated facts about a domain, the structure of knowledge is a representation of

the interrelationships of concepts within a domain. Defining and addressing
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explicit conceptual targets in classrooms is a significant challenge to educational

reform in virtually all domains (e,g, Rutherford & Ahlgren, 1990; National Council

of Teachers of Mathematics, 1989).

The second feature is a cognitive model of performance that permits

inference of student understanding from task performance. The issue of how one

makes valid judgments about student ability out of complex task performance is of

central concern in the current educational and assessment debate (Messick, 1992).

Part of the solution undoubtedly requires improvements in how evidence is

collected and evaluated in classroom settings (e.g., Gitomer & Duschl, in press).

Systematic and detailed exploration of student performance and its relationship to

target features of domain understanding will be needed if a move towards problem-

based learning environments is to succeed. It is worth noting that the difficulties in

implementing the HYDRIVE assessment scheme were not particularly technical. By

and large, the hurdles involved the explicit definition of the profile and the

conceptual mastery of the relationship between student actions and the

interpretations that could legitimately be generated based on those actions. These

relationships were established through the cognitive task ana)Tsis that included a

detailed understanding of the domain and performance within the domain. The

quality of the cognitive task analysis is undoubtedly the most important feature of

this, or any ITS assessment approach.

Mislevy and colleagues have developed prototype assessment models for

characterizing proficiency in several relatively constrained domains. These efforts

have included proportional reasoning (Bé land & Mislevy, 1992; Mislevy,

Yamamoto, & Anacker, 1992), signed number arithmetic (Thompson, & Mislevy,

1993), and mixed number subtraction (Mislevy, this voiume). In each of these

efforts, belief networks were created on the basis of cognitive analyses of task

performance in the domain. Related efforts in physics problem solving are

described by Martin & VanLehn (this volume).

It is important to recognize that this is not a recommendation that all
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teaching of all domains pursue such a rule-based, systematic approach (Mislevy, in

press). Certainly, this methodology is more appropriate for some disciplines than

others. Equally certain, only a subset of any disciplinary focus would benefit from

this type of approach. However, for those arenas of understanding that are highly

structured, and that have clear rules for navigating within that structure, this form

of curricular specification and assessment should prove to be beneficial.
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Notes

1. This work was originally presented at the Conference on Diagnostic Assessment,

cosponsored by American College Testing and the Office of Naval Research in May

1993. We are grateful to Duan-Li Yan and Lauren Nuchow for their technical

assistance in the development of the student profiles. We also thank Isaac Bejar for

helpful comments on a previous version of the paper.

2. HYDRIVE has been generously supported by Armstrong Laboratories of the

United States Air Force. We are indebted to Sherrie Gott and her staff for their

contribution to this effort. The views expressed in this chapter are those of the

authors and do not imply any official endorsement by any organizations funding

this work.
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Figures

Figure 1. A schematized version of the HYDRIVE interface.

Figure 2. The structure of the HYDRIVE tutoring/assessment system.

Figure 3. An expert representation of a flight control problem produced during the

PARI task analysis.

Figure 4. A novice representation ol a flight control problem produced during the

PARI task analysis.

Figure 5. Hypothetical problem space for a hydraulics-like system.

Figure 6. HYDRIVE's strategic goal structure.

Figure 7. A portion of the HYDRIVE student profile that includes the flight control

system nodes, as well as all strategy and procedure nodes.

Figure 8. Updated profile for an ineffective solution.

Figure 9. Updated profile for an effective solution.



Table 1

Network Probabilities for Strategic and Procedural Understanding

Given Proficiency Level

Child

Parent - Profider

WeakStiLL)nz

Strong ..80 _10

Strategic

Understanding

Weak ..20 ..80

Strong .52 .48

Procedural

Understanding

Weak .48
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HYDRIVE's Strategic Goal Hierarchy

1. Power system elimination
2. Active path splitting
3. Power path splitting
4. Isolate failure within power path

a. Serial elimination
b. Remove and replace
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